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The focusing of very weak and slightly concave symmetrical shock waves is examined. 
The equation that describes this focusing is derived and the resulting similitude 
discussed. The initial conditions come from a formal matching of this nonlinear 
description with the linear solution. The maximum value of the pressure coefficient is 
shown to be proportional to  the two-thirds power of both the initial strength of the 
wave front and a parameter characterizing its rate of convergence. 

1. Introduction 
There are many sources of weak shock waves; they arise naturally and through the 

activities of man. Examples include the commonly experienced phenomena of thunder 
and the sonic bang generated by supersonic aircraft. In  this paper we use the terms 
shock wave and wave front interchangeably to refer to a surface of discontinuity in the 
pressure and velocity fields in the fluid. It frequently happens that such wave fronts 
become curved. This curvature may be the result of inhomogeneities in the medium, 
reflexion from curved surfaces or unsteady boundary conditions. Wave fronts which 
are concave in the direction of propagation exhibit different kinds of behaviour 
depending upon the strength of the wave front and the rate of focusing. When the 
focusing is weak relative to  the magnitude of the pressure rise across the wave front, 
the wave front will straighten and no focusing will occur. When the strength of the 
wave front is sufficiently small, the wave front will focus along a caustic surface and a t  
a cusp in this surface, called an arGte, if i t  occurs. A perfect focus occurs when a finite 
portion of the wave front converges to  a single point. 

The focusing process is characterized by large pressure amplification and a nonlinear 
interaction between the shock and the flow behind it. Despite considerable analytical, 
numerical and experiments€ work, many important questions remain unanswered. 
Analytical studies are hampered by the fact that  available theories, such as the shock 
dynamic theory of Whitham (1957) and the theory of geometrical acoustics, are 
inapplicable a t  a focus. The first fails because i t  does not account for the interaction 
between the shock and the flow behind it; the second fails because i t  is a linear theory 
and predicts infinite pressures a t  focal points. Important theoretical studies of the 
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behaviour of weak shock waves at  a caustic include those of Guiraud (1 965) and Hayes 
(1968). For the case of a smooth caustic they gave the similitude that relates the 
amplification of the wave front to its initial strength and geometry. An important 
contribution to our understanding of the behaviour of focusing wave fronts comes 
from the experimental investigations of Sturtevant & Kulkarny (1  974, 1976). Using 
shadowgraph techniques and pressure measurements they studied the focusing of 
curved shocks for a wide range of geometries and strengths and delineated the compli- 
cated wave patterns and pressure histories which occur. 

Because the caustics associated with smooth wave fronts are generally cusped, the 
argte is one of the more frequently observed foci. In  this paper the focusing of very 
weak shocks at  an argte is examined. We consider nearly straight symmetrical wave 
fronts and use the method of matched asymptotic expansions to determine the initial- 
value problem and related similitude that govern the flow in the vicinity of the argte. 
The dependence of the maximum pressure coefficient on the initial strength and shape 
of the wave front is discussed; the main result is that the pressure levels at  the arcte 
are proportional to the two-thirds power of both the initial strength of the wave front 
and a parameter characterizing the rate at  which the wave-front converges. 

2. Physical problem 
In this section we give a qualitative account of the physical effects that govern the 

propagation of curved wave fronts. One effect is that a wave front always propagates 
normal to itself and therefore has a tendency to converge. Another is that the speed of 
propagation of the wave front increases monotonically with its strength. The latter 
effect wilI tend to straighten converging shocks. The behaviour that results depends 
on which effect dominates. 

The behsviour of shock waves which are relatively strong was discussed by Whitham 
(1957, 1959, 1974) using his theory of shock dynamics. To understand the behaviour 
of such shock waves, consider the propagation of a concave symmetrical shock into a 
homogeneous medium as sketched in figure 1 (a) .  The shock’s strength is taken to be 
a maximum in the plane of symmetry and, because the amplification is greatest in this 
plane, the maximum strength will remain there. However, the shock speed will also 
have its maximum in the plane of symmetry and the resultant variation in propagation 
speed will straighten the shock. This behaviour is expected even for shocks with 
pressure coefficients much less than one, provided that the focusing is sufficiently slow. 

When the strength of the shock is sufficiently small its speed of propagation is 
approximately the sound speed of the undisturbed medium. In many respects the 
flow will resemble that predicted by geometrical acoustics, and we first discuss the 
behaviour of such weak shocks from this viewpoint. In  this approximation the propa- 
gation speed is taken to be the sound speed of the undisturbed medium and, if we take 
this to be homogeneous, the trajectories of points on the shock, called rays, will be 
straight. Adjacent rays originating on concave portions of the wave front will intersect, 
and the locus of these intersections will form a surface in space, called a caustic. When 
the wave front has a minimum radius of curvature the caustic will be cusped and the 
wave front will emerge from the cusp in a crossed configuration, as sketched 
in figure 1 (b) .  Experimental evidence of weak shocks which focus and cross is found in 
the sonic-bang measurements made by Wanner et al. (1972) and in the laboratory 
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(b)  
FIGURE 1. Focusing of ( a )  a moderate strength shock and ( b )  an acoustic 

discontinuity;f"(L) 0, R ,  = l / f"(O).  

investigations by Beasley, Brooks & Barger (1969), Cornet (1972) and Sturtevant & 
Kulkarny (1974, 1976). 

Geometrical acoustics predicts that when the wave front reaches the caustic surface 
its pressure jump becomes infinite. A t  the cusp in the caustic this singularity is even 
stronger because portions from either side of the plane of symmetry focus there 
simultaneously. Of course, these singularities are never observed, and they merely 
indicate a local failure of the geometrical-acoustics approximation. Sturtevant & 
Kulkarny have discussed the nonlinear effects which limit the shock strength to finite 
values in the focal region. They showed that as the shock approaches a cusp in the 
caustic it is immediately followed by a sharp expansion. This is due to the amplification 
of the shock relative to the rest of the flow. When the pressure gradient behind the 
shock becomes sufficiently great the weakening effect of the expansion as it overtakes 
the shock becomes noticeable, even if the shock is still weak. Because of the shock's 
interaction with the expansion wave, the strength of the shock is limited to finite values. 

8-2 
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3. Mathematical formulation 
We consider the wave front shown in figure 1 ( b )  and take the co-ordinate system to 

have its origin a t  the point of minimum radius of curvature of the initial wave front. 
The + x axis is in the direction of propagation and the y axis is tangential to the initial 
wave front at y = 0. The equation of the initial wave front is taken to be xi = f (yi), 
where xi and yi are the co-ordinates of the initial shock and f is symmetrical about 
y = 0. We are considering the propagation of very weak shocks in an inviscid perfect 
gas with no heat conduction. In the case considered here the shock strength is always 
small. The results of Hayes (1957) may be used to argue that for the spatial and 
temporal gradients expected here the flow may be assumed irrotational. If we assume 
that a velocity potential $ exists, the inviscid equations of motion reduce to 

sbtt+2$x(5,t-t2$,Ql,t+2$x$,SSz~ = ( a 2 - $ 3 $ z z +  (a2-@)Qy,7 (1) 

where a is the local speed of sound, which for a perfect gas it is given by the isentropic 
Bernoulli integral for unsteady flow: 

a2 = a2- 0 (Y-1)[$,++($:+$;)1, ( 2 )  

where a, is the constant speed of sound in the undisturbed medium and y is the ratio of 
specific heats. The velocity potential must satisfy the initial conditions 

$(x,y, 0) = $o(X,Y), $ t ( X , Y ,  0) = $l@>Y), (3) 

where the functions $o and $1 are taken to be zero ahead of the wave front, i.e. for 
x > f (y) ;  immediately following the shock, their values must be consistent with the 
appropriate shock jump relations. 

As mentioned in previous sections, we consider the shocks to be not only initially 
weak but also nearly straight. We take the maximum strength of the wave front to be 
at  y = 0 and the pressure coefficient, C,(x, y, t )  = - 2$,/a; to lowest order, to be small 
for all x and y at t = 0. We define 

E EZ Cp(O-,0,O) < 1 

as the small parameter associated with the shock strength. For the shock to be 
practically straight we require thetfbe such that the maximum slopef’ is small. If we 
define L to be the point of maximum slope, i.e. f”(L) = 0, then the requirement 
6 = L/Ro < 1, where Rb is the minimum radius of curvature of the shock, ensures that 
the slope is small everywhere. Another restriction we shall need to place on the shape 
of the wave front concerns the rate of change of the radius of curvature of the wave 
front at  t = 0. Denoting the radius of curvature by R(y,), we have 

my,) = +f’(Yi)21”’(Yi). (4) 

In  5 4 we shall need to require that RiRo62 = (3  - f i v ( O )  R;) 62 be of order one in the 
limit of vanishing 6. Here Ri denotes the second derivative of R(yi) a t  yi = 0 and 
f*v(O) is the fourth derivative off at yi = 0. Examples of possible wave-front shapes are 

Both shapes are smooth and possess inflexion points. The parameter 6 is found to be 
2*A/Z in the first case and cfc; in the second, and it is clear that the limit 6 -+ 0 may 
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always be taken. The above formulae may be used to calculate R;IR,iJ2. In  the first case 
this equals 3(1 +P) exactly and the requirement that R,"RoP = O(1) as 8 -+ 0 is 
satisfied; thus the results derived in this paper may be applied to the first example. 
The second case is given because it is a wave-front shape which does not satisfy this 
condition; essentially, this is because fF(0) 3 0 and, consequently, R,"RoS2 -+ 0 as 
S -+ 0. In the following sections we shall always assume 

K = - f i V ( 0 ) R ~ S z z  R,"R,S2 = O(1). 

Our main objective is the determination of solutions to (1) and (3) which are valid 
for small E and 6 and, for consistency, whose pressure and velocity perturbations are 
always small. In  particular we wish to study the case where wave-front crossing occurs. 
In  this paper we give approximations to (1) in two distinct regions. The first is just the 
linear wave equation and is valid for times of order Lla,. The solution, subject to the 
initial conditions (3), is easily found; this is the outer solution. An approximation to (t  ) 
which is valid as the wave front approaches the ar&e, i.e. the cusp in the caustic, is 
derived in $ 5 .  The initial condition for this equation is obtained by the method of 
matched asymptotic expansions, thus establishing the initial-value problem governing 
the flow in the vicinity of the ar6te. 

In the next section the outer solution and the expression for the caustic shape near 
the cusp are derived. In  $ 5  the inner region in which the nonlinear effects predominate 
is discussed and the inner equation deduced. In  $ 6 the appropriate initial condition for 
this equation is obtained through the method of matched asymptotic expansions. 
These results provide a similitude which shows that the solution to the inner problem 
involves only a single parameter. 

4. Outer region 
To determine the outer equation it is convenient to work in a co-ordinate system 

that moves with the wave front. Accordingly, we write the full potential equation (1) 
in terms of the co-ordinates X =- x - a,t, y and t :  

dtt - 2aodxt + 2 d x  dxt + (Y - 1) dt dxx - (Y + 1) a, dx #xx 
= aEd,, - Pd,dt, + (Y - 1) #td,,l + ao[2q5,dx, + (Y - 1) dx9,,1+ *. . )  (5) 

where ( 2 )  has been used and the terms omitted are cubic in q5. 
In the outer region it is natural to take 

a,t = O ( L ) ,  y = O(L),  X = O(A*), @ = O(a,k*),  

where the length scales A* and k* are yet to be determined. According to the theory of 
geometrical acoustics the square of the pressure coefficient immediately following the 
shock varies inversely with the ray-tube area. For our problem all the rays are straight 
lines and, consequently, the pressure coefficient behind the shock obeys (see, for 
example, Friedlander 1958, pp. 51-56) 

Here R(y,)  is the radius of curvature of the initial wave front at the point y = y i ;  
yi effectively labels the ray of interest. Thus, for times of order Lla,, we see that the 
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time rate of change of the shock's strength is of order a,/R(yi). This suggests that the 
appropriate outer scaling for the derivative ( a / a t ) ,  is a,/Ro. Accordingly, we adopt the 
following outer scaling for the derivatives in ( 5 )  : 

a i a  
ax=R*z 

and 9 = a, k*$. For t = O(L/a,), there is no amplification to lowest order in 6; we 
therefore assume that k*/A* and k*/L are small. When the above expressions are 
substituted in ( 5 )  we find that it may be written in the following form: 

We now assume that k*/A* and k*/L are small; it may be shown that this implies that 
the omitted cubic terms are negligible compared with the largest of the first- and 
second-order terms. Furthermore, when k*/A* is small, the third term on the left- 
hand side and the second term on the right-hand side are seen to be negligible com- 
pared with the 4%; term and the $ol term, respectively. When these terms are dropped, 
the terms remaining are 

This expression is reduced further by assuming that 6 is small. An immediate conse- 
quence of this assumption is that the 6~ term is negligible compared with the term. 
Inspection of the remaining terms shows that the only choice of A* which yields a 
non-trivial balance of terms, i.e. one which contains derivatives with respect to x, g 
and Z, is A*/Ro = 62,  or A* = L6. Here, for convenience, we have dropped the order 
symbols. The resulting balance of terms may be written as 

2 4 5 ; + ( Y + l ) ; f i ~ 4 j z ~ + a , ,  = 0. 

The coefficient of the nonlinear term is obtained by noting that A* = 6L implies that 
(a/at),  M -a,(a/aX), in the outer region and therefore that 

or simply k* = A*€. Thus, provided that s/62 = 0(1) ,  nonlinear effects are negligible. 
We now assume that this is the case, so that the outer equation becomes 

24zT+41D = 0. 

Transforming back to the physical variables and back to the x, y, t co-ordinates, we 
see that our outer equation is just the wave equation 

9tt = ai(+m + 9l/l/h (6) 

where we have used the fact that (a/at) ,  w -a,(a/aX), in the outer region. 
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The explicit form of the outer solution is obtained by solving the linear wave 
equation (6) with the initial conditions (3). The solution to (6) which satisfies (3) is 
given by the well-known Poisson integral formula 

The quantities I. and I, are the integrals of #, and #1 over a sphere of radius a,t centred 
a t  the point (x, y, 0) .  This sphere has the equation 

(x, - x)2 + (y, - y)2 + 2: = a; t 2 ,  (7) 

where the subscript s refers to points on the sphere of integration. 
We now consider the distance s measured along a ray from the initial wave front to 

Here we have defined s to be positive ahead of the initial wave front and negative 
behind it. In  the following sections it will be useful to have the functions #, and #1 in 
terms of s instead of x and y. Using the fact that f / L  and f’ are small, we may replace 

Ys = Y i  + o(s,), 8, = X8 -f (y,) + o(s,). (9) 
(8) by 

Using (9) to replace x, in the integrands of I, and I,, we may write these integrals to 
lowest order as 

1 0  = / / #o ( s s9Ys )dA,  4 = / / h ( s s J s ) d A ;  

the area element d A  of the sphere (7) may be written as 

a0 t dz, &s 
[af t 2  - (y, - y)2 - z34’  

dA = 

Using (7) and (9), we now write s, explicitly in terms of y, and z,: 

s, = X+a, t+ [ U ~ t 2 - ( y s - y ) 2 - z : ] 3 - - f ( y ~ ) + O ( S , ) ,  

where the 4 sign refers to points on the sphere of integration with x, 2 x, respectively. 
The above results have been derived in terms of the physical variables X, y, t ,  etc. 

We formally define the outer variables 

The outer solution may now be written as 

where 
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In determining the scaling for s,, we have used the fact that the functions d,, and dl are 
identically zero for s, > 0;  therefore it is necessary to consider onlynon-positive values 
of s,in the above integrations. As a result of this, sR is of order 6L in the outer region and, 
although g,  and y" are each of order one in the outer region, their difference ys  - y will 
always be of order 61L there. Because z, is also found to be of order SiL, the last two 
terms under the square root are of the same order. In the outer region t can vanish; 
(1 1 ) is therefore the lowest-order expression for S, which is uniformly valid in the outer 
region. 

Strictly speaking, the outer solution is valid only for times of order L/ao. The result 
(1 0 ) ,  of course, predicts infinite pressures when the wave front reaches the caustic 
surface. This surface is defined by the intersection of adjacent rays, i.e. of adjacent 
normals to the initial wave front. These considerations imply that the distance, 
measured along a ray, from a point on the initial wave front to the caustic is just R(y,), 
the local radius of curvature of the wave front. In terms of the Cartesian co-ordinates x 
and y the equation of the caustic surfaces is found by substituting s = R(y,) in ( 8 ) .  
Doing so and expanding for small 6, we find that the caustic is cusped and that near 
this cusp it has the shape 

to lowest order. Or, if we eliminate yi, 
x,-R,  2 (7) = %R,"R,S2 @) , 

where the subscript c refers to the caustic. As discussed in $3,  we require that 
K z RgRoS2 be of order one. Init,ial shock shapes which have K = o ( l ) ,  such as the 
second example discussed in $3,  require the inclusion of higher-order terms in the 
above expansions. This will change the relative sizes of the x and y in the inner scaling, 
thereby increasing the strength of the singularity at  the focal point. For wave fronts 
with K = o( 1) but such that a 6 may be found and made small, the procedure of this 
paper may be used to obtain analogous results. 

The singular behaviour of the solution at  the caustic suggests that nonlinear effects 
are important there. In  the next section we assume that the initial strength of the 
wave front is so small that these nonlinear effects are important only in the vicinity of 
the caustic. We then find the appropriate nonlinear equation governing the flow near 
the cusp in the caustic. 

5. Inner region 

inner variables 2, i, 8, 
We now seek an inner expansion valid in the vicinity of the ar6t.e. We introduce the 

and $ and corresponding inner scales A, h, A and k, viz. 

We assume that the nonlinear effects are important in only a small neighbourhood of 
the cusp, and we shall therefore take A = o(1) and h/L  = o(1). The amplification is 
greatest in the region immediately following the shock and we expect nonlinear effects 
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to be most important there; consequently, we use the same scaling for x and t .  Further- 
more, we assume that, although the strength of the shock is considerably amplified in 
the focal region, it remains small. Thus we shall take $x/ao = O ( k / A )  = o(1) and 
$,/ao = O ( k / A )  = o( 1) .  When the scaling (1  2) is substituted into ( 5 )  the full potential 
equation may be written as 

As in our analysis of the outer region, the assumptions that k / A  and k / A  are o( 1)  imply 
that we may drop not only the cubic terms, but also the third term on the left-hand 
side and the second term on the right-hand side. The resulting equation reads 

On physical grounds it is clear that we must require that the inner equation contains 
x, 9 and t” derivatives and at  least one nonlinear term; the only choice of A which 
results in such an equation satisfies A/ARo = o(1). For small A/ARo,  the nonlinear 
term on the right-hand side and the &term may be dropped. In order to balance the 
remaining terms we need 

AR, A2R,2 k A2Rt 
A A 2  A A2 9 1  -- 

Thus, to lowest order, the inner equation is 

We remark here that (14) also describes low frequency, unsteady, transonic flows, as 
one might have anticipated. 

We now assume that in the inner region the relative size of the x and y length 
scales is given by the caustic surface calculated in $4. This requires that we take 
A3 = O(A2/L2). Dropping the order symbol and simply substituting A2 = A3L2 in (13), 
we may express A, A and k in terms of A and 8: 

AIL = AQ, A / L  = A26, k / A  = 1162. (15) 

Thus A, h and k are known in terms of the physical parameters e and 6 once A has been 
determined. 

The flow in the focal region is found by solving the inner equation (14) subject to an 
appropriate initial condition. In  the next section we determine this initial condition 
through matching with the outer solution. 
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6. The matching and the similitude 
In  this section the initial data for the inner problem are obtained through the 

method of matched asymptotic expansions. It is further shown that, apart from a 
simple scaling of the independent and dependent variables, the solution to the resultant 
initial-value problem depends on only a single combination of the physical parameters: 
the similarity parameter. 

We first consider the outer expansion, which we shall write in the inner variables 
(1  2) and then expand for small A and 6 with the inner variables fixed. We begin by 
expressing (1 1) in terms of the inner variables ( 1  2) and expanding for small A and 6. 
As a result of this expansion we find that the inner scaling for the integration variables 
ys and zs is given by 

Qs = A-igs = A-tL-'y,, 
h 2, = 6!iA-IEs = A-lL-lz, 

Es(A3Qs,, A6-k2s; A2x, A3gs, (1 +At")/S) = A2[+8E-p(Qs)], 

and that, to lowest order, the inner expansion of Es is 

(16) 

where P(gs) is defined by 

P(Q,) = ms; x ,  f?, f )  = - &Kg: + gfg: + g s g  - x .  
In  the derivation of (16) we have chosen the lower sign in (11) .  Any other choice 
corresponds to portions of the integration sphere with xs >f(ys) and contributes 
nothing to the integrals 1, and &. 

The integrals 1, and f; are to be evaluated over the surface of a sphere. However, 
when the inner expansion of the outer area element d A  is taken, we see that it may be 
replaced by A%6-ld8,dQS. Thus, in the inner expansions of f, and &, we may transfer the 
integration from the sphere bo the 8s, gs plane. 

We need the expansion of (a near the cusp only for times less than R,/a,, i.e. f < 0. 
The area of integration will therefore be bounded by the single closed curve gS = 0, or 

8, = = 0 intercepts 9, and gl are just the two 
real roots of p = 0. 

When the inner expansions of the integrals 1, and f; are taken it will be useful to have 
the Taylor series expansions of 6, and (a, for small Es and g,: 

[2/3(Qs)]*, as sketched in figure 2. The 

(a, = &Es[l + O&, g)], (a1 = - i[l + o(gs, 831. 
These are, of course, consistent with the weak-shock jump conditions. 

The above results may now be used to show that the inner expansions of 1, and - 
1, are 

and 

to lowest order. When the ss integration is performed and the result substituted in (1 0) ,  
we find 
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FIGURE 2. Area of integration for I ,  and I , .  

Thus, when written in inner variables, the inner expansion of the outer solution is 

This result is essentially the expansion of the linear solution (10) as the wave front 
approaches the cusp in the caustic. As mentioned in previous sections, the pressure 
distribution associated with this pressure field can be singular. The pressure coefficient 
based on (1 7 )  is 

1 8 vu c, = -- 
77 x 2 t A t s , :  Ptd& 

At t = R,/a, or, in terms of the inner variables, E = 0, the pressure coefficient is 
proportional to (22, -x)-i along the x axis and to IyI-) along the y axis. This is more 
singular than the analogous result for a smooth caustic, where the pressure behaves as 
the - 8  power of the distance along the caustic and the - +  power of the distance 
normal to it (see, for example, Friedlander 1958, pp. 67-70; or Hayes 1968). 

Another interesting feature of (1 7),  which turns out to be essential for the matching, 
is that it  is self-similar in time, i.e. it  may be written as 

A 

$4 = ( - t)%F(X/P, @/( - %)#). 

f J E - 2  &p, r 247 / (  - 67)3, 

To show this, we define similarity variables u and by 

where ( 3 XI., 7 E Q / K  and r = t / K .  Using these definitions and replacing the integra- 
tion variable 8, in ( I  7) by ( - 67)* q ,  we find that (1 7 )  may be rewritten as 

(18) 
E A 

6 = - + ( $ K ) )  K~ ( - 7)f G ( r 9  r), 

where G is defined by 

in which p = - q4 - 2q2 + r q  + u and qzt and qt are the two real roots of 3 = 0. 
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We now consider the inner solution. Although, in general, solutions of the form (18) 
do not satisfy (la), the inner solution must have such a form as f -+ -co. Thus it is 
most convenient to do the matching in the co-ordinates (T, r and 7. Accordingly, we 
write the solution $(x, 9, f )  to (14) in terms of u, r and 7 and then rewrite $ in outer 
variables: 

where G = - $x/(8-- 1 ) 2  and E 4y"/Bt(l -lit)#. The usual matching principle 
states that, in the limit 6 -+ 0,  A --f 0, S -+ 0 with a, y" and 2 fixed, $(@, f', (62- ~ ) / A K )  
must approach (1 8) asymptotically. Thus the function &(T, r, 7) must satisfy 

$ = &, r, 7) = $(s, F, (8- ~ ) / A K ) ,  

$@, r, 7) - &(&+ ( - 713 G(V, r) 
as 7 -+ - co for all values of u and r. In order that the initial condition be non-zero and 
finite, we must take 

A# 6/62 = ~ ( l ) .  

This last result determines the scaling (1 5) completely in terms of the physical para- - - 

= 6 W .  h s R d k  
meters 6 and 6, viz. 

Z = A a = -  62' L - = -  88' x 
When written in terms of the variables 6,  7 and 7 the initial-value problem for the 

inner region is 
2 $ 6 5 7 + ( Y + 1 ) K - l $ ~ $ ~ 6 + $ ? / ? /  = 0, 

where as 7 -+ - co 

for all values of 6 and 7. Here G(C,y, 7) is just the integral G(a,  r) rewritten in terms of 
the variables 6,  7 and r. 

We have now established the initial-value problem governing the flow in the focal 
region. The solution to this problem is seen to possess a similitude, i.e. it  depends on 
only a single combination of the remaining physical parameters y and K.  This is readily 
seen when the above initial-value problem is recast in terms of the scaled velocity 

$(& 797) - N K ) f  ( - 7)* G(t-% 7,7) 

- 

potential 

The problem then becomes 

2 0 6 ,  + Q@[ + @,,? = 0, 

where as 7 -+ - co 

The similarity parameter Q is defined by 

@ - ( - 7P G(5,7 ,  7). 

Q g(y+ 1 ) / ( 2 K ) 4 .  

Except for a scaling of the dependent and independent variables, any two flows with 
the same value of Q will be identical. The flow quantity of especial interest here is the 
pressure coefficient, which is given by 
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From this we see that the pressure levels a t  an ar6te are of order d6* and the amplifica- 
tion is of order d d # .  The result that the pressure is proportional to the two-thirds 
power of the initial strength of the shock was also deduced by Pierce (1971). 

We conclude this section with some remarks regarding the requirement that 
6 = 0(6~). An important result, but one which is outside the scope of the present theory, 
is the prediction of the transition shock strength; that is, for a given initial shock shape, 
the prediction of the initial shock strength above which the straightening of the shock 
associated with shock dynamic theory occurs. In  $ 4  we have seen that when 

6 = O ( 8 )  = o(1) 

nonlinear effects are important even for times of order Lla,. Because the distance to 
the caustic is large compared with L, we expect that the shock straightens without 
focusing. On the basis of this, we conjecture that the order of magnitude of the 
transition shock strength is given by E = O(62). Of course, a more precise estimate must 
be given either by laboratory or numerical experiments or by a more comprehensive 
analysis. 

7. Conclusion 
The focusing of a very weak and almost straight shock at  an ar6te has been examined. 

The method of matched asymptotic expansions has been used to establish the initial- 
value problem and similitude governing the flow in the focal region. The fundamental 
parameters in this problem are seen to be e,  a measure of the initial strength of the 
shock, and 6, which measures the rate at  which the wave front converges. The maxi- 
mum pressures at  the ar6te have been shown to be proportional to (&?)#. The results of 
this paper are valid for wave fronts with 6 = o(S2) and S = o(1). 
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76-2954B. 

R E F E R E N C E S  

BEASLEY, W. D., BROOKS, J. D. & BARGER, R .  L. 1969 A laboratory investigation of N-wave 
focusing. N.A.S.A. Tech. Note D-5306. 

CORNET, E. P. 1972 Focusing of an N-wave by a spherical mirror. Appl. Res. Lab., Univ. Texas, 
Austin, Rep. ARL-TR-72-40. 

FRIEDLANDER, F. G. 1958 Sound Pulses. Cambridge University Press. 
GUIRAUD, J. P.  1965 Acoustique gbometrique, bruit ballistique des avions supersoniques et 

HAYES, W. D. 1957 The vorticity jump across a gasdynamic discontinuity. J .  Fluid Mech. 2 ,  

HAYES, W. D. 1968 Similarity rules for nonlinear acoustic propagation through a caustic. 
2nd Conf. Sonic Boom Res. (ed. I. R .  Schwartz). N.A.S.A. Special Publ. no. 180, pp. 165-171. 

PIERCE, A. D. 1971. Maximum overpressures of sonic booms near the cusps of caustics. In 
Noise and Vibration Control Engiheering (ed. M. J. Crocker), pp. 478-487. Purdue University 
Press. 

STURTEVANT, B. & KULKARNY, V. A. .1974 Dynamics of weak shock waves at a focus. PTOC. 
2nd Inter-Agency Symp. Univ. Res. Transportation Noise, North Carolina State Univ., 
Raleigh, pp. 402-415. 

focalisation. J. MLc. 4, 215-267. 

595-600. 



222 

STURTEVANT, B. & KULKARNY, V. A. 1976 The focusing of weak shock waves. J. Fluid Mech. 

WANNER, J. C . ,  VALLEE, J., VIVIER, C. & THERY, C. 1972 Theoretical and experimental studies 

WHITHAM, G. B. 1957 A new approach to the problems of shock dynamics. Part 1. Two- 

WHITHAM, G. B. 1959 A new approach to the problems of shock dynamics. Part 2. Three- 

WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Interscience. 

M .  S .  Cramer and A .  R .  Seebass 

73, 651-671. 

of the focus of sonic booms. J. Acoust. SOC. Am.  52, 13-32. 

dintensio~al problems. J .  Fluid Mech. 2 ,  146-171. 

dimensional problems. J .  Fluid Mech. 5 ,  369-386. 




